
iv

ABSTRACT

Hazel is a live programming environment with typed holes that serves as a reference imple-

mentation of the Hazelnut Live dynamic semantics [1] and the Hazelnut static semantics [2],

both of which tackle the “gap problem.” This work attempts to further develop the Hazelnut

Live dynamic semantics by implementing the environment model of evaluation (as opposed

to the current substitution model) and memoizing several evaluation-related operations to

improve performance. Additionally, we provide an implementation-level description and a

reference implementation of the fill-and-resume (FAR) performance optimization proposed

in Hazelnut Live. We produce a metatheory and reference implementation of the proposed

changes. Our implementation is benchmarked against the existing Hazel implementation

to show that the results match expectations, although there is room for future improve-

ment with the development with memoization. Finally, we discuss some useful theoretical

generalizations that result from this work.

	Introduction
	Problem statement
	The contribution of this work
	Structural overview

	Programming language principles
	Specifications of programming languages
	Syntax
	Notation for semantics
	Static semantics
	Dynamic semantics

	Introduction to functional programming and the -calculus
	Implementations of programming languages
	Compiler vs. interpreter implementations
	The substitution and environment models of evaluation

	Approaches to programming interfaces
	Structure editors
	Live programming environments and computational notebooks

	An overview of the Hazel programming environment
	Motivation for Hazel
	The gap problem
	An intuitive introduction to typed expression holes
	The Hazel interface
	Implications of Hazel

	Introduction to OCaml and Reason syntax
	Hazelnut semantics
	Hazelnut syntax
	Hazelnut typing and action semantics
	Hazelnut Live elaboration judgment
	Hazelnut Live final judgment and dynamic semantics
	Hole instance numbering
	High-level overview of fill-and-resume

	Implementing the environment model of evaluation
	Hazel-specific implementation
	Evaluation rules
	Evaluation of holes
	Evaluation of recursive functions
	Type safety

	The evaluation boundary and general closures
	Evaluation of failed pattern matching using generalized closures
	Generalization of existing hole types
	Formalizing the evaluation boundary
	Alternative strategies for evaluation past the evaluation boundary
	Pattern matching for closures

	The postprocessing substitution algorithm ([])
	Substitution within the evaluation boundary ([],1)
	Substitution outside the evaluation boundary ([],2)
	Post-processing memoization

	Implementation considerations
	Data structures
	Additional constraints due to hole closure numbering
	Storing evaluation results versus internal expressions

	Identifying hole closures by physical environment
	Rationale behind hole instances and unique hole closures
	The existing hole instance numbering algorithm
	Issues with the current implementation
	Hole instance path versus hole closure parents

	Algorithmic concerns and a two-stage approach
	The hole numbering algorithm
	Hole closure numbering order
	Unification with substitution postprocessing
	Characterizing hole numbering

	Fast structural equality checking

	Implementation of fill-and-resume
	Motivation
	The FAR process
	Detecting the fill parameters via structural diff
	``Fill'': pre-processing the evaluation result for re-evaluation
	``Resume'': Modifications to allow for re-evaluation
	Post-processing resumed evaluation

	Entrypoint to the FAR algorithm
	Characterizing FAR
	FAR examples
	Motivating example
	Introducing and removing static type errors
	Example requiring recursive evaluation of closure environment
	Hole fill expression memoization example
	Noteworthy non-examples

	Tracking evaluation state
	Step counting

	Differences from the substitution model

	Evaluation of performance
	Evaluation of performance using the environment model
	A computationally expensive fibonacci program
	Variations on the fibonacci program

	Postprocessing performance
	FAR performance
	A motivating example
	Decreased performance with FAR

	Discussion of theoretical results
	Expected performance differences between evaluating with substitution versus environments
	Purity of implementation
	Summary of metatheorems
	FAR for notebook-style editing
	Summary of generalized concepts
	Generalized closures and the evaluation boundary
	A generalization of non-empty holes
	FAR as a generalization of evaluation

	Future work
	Simplification of the postprocessing algorithms
	Improvements to FAR
	Finishing the implementation of FAR
	Memoization for environments during re-evaluation
	Choosing the edit state to fill from
	User-configurable FAR
	UI changes for notebook-style evaluation

	Collection of editing statistics
	Generalization of memoized methods
	Mechanization of metatheorems and rules

	Conclusions and recommendations
	References
	Appendices
	Primer to the -calculus
	The untyped -calculus
	The simply-typed -calculus
	The gradually-typed -calculus

	Reproduced rules from Hazelnut Live
	Hazelnut Live dynamic semantics
	Final judgment
	Substitution-based evaluation judgment

	Hazelnut Live substitution-based FAR

	Selected code samples
	Correspondence between theory and code
	Relevant code snippets
	Internal language
	Numbered environments
	Evaluation
	Postprocessing
	Unique hole closures
	FAR
	Evaluation state

