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ABSTRACT

Hazel is a live programming environment with typed holes that serves as a reference imple-

mentation of the Hazelnut Live dynamic semantics [1] and the Hazelnut static semantics [2],

both of which tackle the “gap problem.” This work attempts to further develop the Hazelnut

Live dynamic semantics by implementing the environment model of evaluation (as opposed

to the current substitution model) and memoizing several evaluation-related operations to

improve performance. Additionally, we provide an implementation-level description and a

reference implementation of the fill-and-resume (FAR) performance optimization proposed

in Hazelnut Live. We produce a metatheory and reference implementation of the proposed

changes. Our implementation is benchmarked against the existing Hazel implementation

to show that the results match expectations, although there is room for future improve-

ment with the development with memoization. Finally, we discuss some useful theoretical

generalizations that result from this work.
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